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• Three-arm design, comparing the Experimental Treatments 1 and 2 (E1 
and E2) to against Control

• 500:500:500 patient design

• Primary endpoint is progression-free survival (PFS)
– mPFSLen = 65 mo, HRPFS Tec = HRPFS TecLen = 0.7
– Single interim analysis

• Key secondary outcome of overall survival (OS)
– mOSLen = 100 mo, HROS Tec = HROS TecLen = 0.75
– Three interim analyses

Running Example 1

3



Viral exacerbation at 40x magnification

Group sequential design 
for a single endpoint
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Group sequential design (GSD) 
introduction

• Many clinical trials are designed considering an option of early 
termination
–  Overseen by Data and Safety Monitoring Board

• Reasons to conduct interim analyses as in Jennison & Turnbull (2000):
– Ethical, administrative and economic 

• Group sequential designs have been developed that avoid inflating the 
pre-specified type I error associated with the repeated testing of the 
treatment effect based on accumulating data (EMEA, 2007)

• There are also incentives to reach early decision if study is negative



Group Sequential Tests
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• Test 𝐻!: 	𝜇 ≤ 0 against 𝐻": 	𝜇 > 0 

• 𝑍", 𝑍#, ⋯ , 𝑍$ are	standardized	test	
statistics	obtained	at	analyses	1, … , 𝐽

• Crossing	upper	boundary	(denoted	by	
𝑏! ’s)	results	in	early	stopping	for	a	
positive	outcome

• 𝑃!"# 𝑈$"%
& 𝑍$ > 𝑏$ = 𝛼

• Crossing	lower	boundary	=>	
stopping	for	futility
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Wang and Tsiatis Family with parameter  Δ

Critical Boundary at the 
analysis j:

𝑏! = 𝐶"#	𝑗$%&.(	

• Δ=0								O’Brien-Fleming

• Δ=0.5					Pocock	boundary



• Can easily be generalised for arbitrary information levels fixed in 
advance

• Small deviation from the planned information levels will not lead to 
substantial impact on type I / II error rates

• But a better way of designing under unpredictable information levels 
is…

 

Functional form efficacy bounds
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I.e., the original approach



• Handles unpredictable information levels with strict type I error control

• Doesn’t require maximum number of analyses to be pre-specified

• Use non-decreasing function 𝑓 ∶ 0,1 → 0, 𝛼 , that gives cumulative 𝜶 
spend at IF 𝑡! as 𝑓 𝑡!
– Information fractions (IFs) 𝑡$ =

'!
'"

• Where 𝐼!	amount of statistical information at the j-th analysis

• Does require information level 𝐼! to not depend on +𝜃", … , +𝜃!#"

Error spending
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I.e., the approach usually used today



Error Spending Function Approach
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𝑃$! 𝑍" > 𝑏" = 𝑓(𝐼"/𝐼%&')
Analysis 1 get 𝑏": 

Analysis 2 get 𝑏(: 
𝑃$! 𝑍" < 𝑏", 𝑍( > 𝑏( =
𝑓 𝐼(/𝐼%&' − 𝑓(𝐼"/𝐼%&')

…
Continue solving for 𝑏$	until reaching 𝐼()*, and 
“spend all alpha”

Also, the method accommodates “under” and 
“overrunning” of information scenarios

Fix, maximum	information	(N	or	#	events)	 𝑰𝐦𝐚𝐱
Given Function 𝒇: 0,1 → 0, 𝜶  non-decreasing



• Lan and DeMets O’Brien-Fleming approximation:
𝑓 𝑡 = 2 1 − Φ ⁄Φ!" 1 − 𝛼/2 𝑡

• Lan and DeMets Pocock approximation:

𝑓 𝑡 = 𝛼 ln 1 + 𝑒 − 1 𝑡  
• Hwang, Shi and DeCani (𝛾-family), with 𝛾 ∈ ℝ:

𝑓 𝑡 = =𝛼 1 − 𝑒!#$ / 1 − 𝑒!# 𝛾 ≠ 0
𝛼𝑡 𝛾 = 0

𝛾 = −4 Similar to O’Brien-Fleming
𝛾 = 1 Similar to Pocock

• Kim and DeMets (𝜌-family / power-family), with 𝜌 > 0:
𝑓 𝑡 = 𝛼𝑡%

    𝜌 = 3 Similar to O’Brien-Fleming
𝜌 = 0.75 Similar to Pocock

Common spending functions
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• EAST    mycytel.cytel.com

• ADDPLAN

• SAS SEQDESIGN

• R:
– gsDesign   https://gsdesign.shinyapps.io/prod/
– rpact (~ ADDPLAN)  https://rpact.shinyapps.io/public/
– Others too…  https://cran.r-project.org/web/views/ClinicalTrials.html

Software
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http://mycytel.cytel.com/
https://gsdesign.shinyapps.io/prod/
https://rpact.shinyapps.io/public/
https://cran.r-project.org/web/views/ClinicalTrials.html


• Just consider TecLen vs Len for PFS
– mPFSLen = 65 mo, HRPFS TecLen = 0.7

• Usual total one-sided 𝛼 = 0.025 and suppose we desire 90% power
– More on this later though

• 5% drop-out rate for PFS

• 1000 patients with recruitment rate = 42 pts/mo

• GSD:
– Single interim analysis at 70% IF (i.e., 𝒕𝟏 = 𝟎. 𝟕, 𝒕𝟐 = 𝟏)
– Lan and DeMets O’Brien-Fleming (LDOF) spending function

Running Example 1:
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Running Example 1: 
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gsDesign
> gsDesign::gsSurv(k         = 2,
+                  test.type = 1,
+                  alpha     = 0.025,
+                  beta      = 0.1,
+                  timing    = c(0.7, 1),
+                  sfu       = gsDesign::sfLDOF,
+                  lambdaC   = log(2)/65,
+                  hr        = 0.7,
+                  eta       = -(1/12)*log(1 - 0.05),
+                  gamma     = 42,
+                  R         = 1000/42)
Time to event group sequential design with HR= 0.7 
Equal randomization:          ratio=1
One-sided group sequential design with
90 % power and 2.5 % Type I Error.
              
  Analysis  N   Z   Nominal p  Spend
         1 236 2.44    0.0074 0.0074
         2 337 2.00    0.0228 0.0176
     Total                    0.0250 

++ alpha spending:
 Lan-DeMets O'Brien-Fleming approximation spending function with 
none = 1.

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
          Analysis
   Theta      1      2 Total  E{N}
  0.0000 0.0074 0.0176 0.025 335.8
  0.1779 0.6152 0.2848 0.900 274.4
             T    n   Events HR efficacy
IA 1  44.28596 1000 235.5577       0.728
Final 63.88113 1000 336.5110       0.804
Accrual rates:
        Stratum 1
0-23.81        42
Control event rates (H1):
      Stratum 1
0-Inf      0.01
Censoring rates:
      Stratum 1
0-Inf         0



Running Example 1:
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rpact
> design           <-
+   rpact::getDesignGroupSequential(kMax             = 2,
+                                   alpha            = 0.025,
+                                   beta             = 0.1,
+                                   sided            = 1,
+                                   informationRates = c(0.7, 1),
+                                   typeOfDesign     = "asOF")
> sampleSizeResult <-
+   rpact::getSampleSizeSurvival(design           = design,
+                                lambda2          = log(2)/65,
+                                hazardRatio      = 0.7,
+                                dropoutRate1     = 0.05,
+                                dropoutRate2     = 0.05,
+                                dropoutTime      = 12,
+                                accrualTime      = c(0, 1000/42),
+                                accrualIntensity = 42)
> summary(sampleSizeResult)

Sample size calculation for a survival endpoint

Sequential analysis with a maximum of 2 looks (group sequential design), 
overall 
significance level 2.5% (one-sided).
The sample size was calculated for a two-sample logrank test, 
H0: hazard ratio = 1, H1: hazard ratio = 0.7, control lambda(2) = 0.011, 
accrual time = 23.81, accrual intensity = 42, dropout rate(1) = 0.05, 
dropout rate(2) = 0.05, dropout time = 12, power 90%.

Stage                                         1      2 
Information rate                            70%   100% 
Efficacy boundary (z-value scale)         2.438  2.000 
Overall power                            0.6152 0.9000 
Expected number of subjects              1000.0 
Number of subjects                       1000.0 1000.0 
Cumulative number of events               234.5  335.0 
Analysis time                              44.1   63.5 
Expected study duration                    51.6 
Cumulative alpha spent                   0.0074 0.0250 
One-sided local significance level       0.0074 0.0228 
Efficacy boundary (t)                     0.727  0.804 
Exit probability for efficacy (under H0) 0.0074 
Exit probability for efficacy (under H1) 0.6152 

Legend:
  (t): treatment effect scale



• GSDs seek to reduce the expected time to a significant result

• Easy to control type I error rate using error spending approach

• On top of usual requirements for sample size calculation, specify:
– IFs at the interim analyses
– Spending function

Summary
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Viral exacerbation at 40x magnification

Graphical testing 
procedures in fixed-
sample trials



• Most clinical trials evaluate significance for multiple important 
outcomes

• Some evaluate significance for multiple treatment arms

• In either case, we then typically need to control the probability of 
committing one or more type I errors across the analyses
– Family-wise error rate (FWER) control

• Multiple testing procedures are methods for achieving such FWER 
control

Multiple testing procedures

18



• Flexible multiple testing framework that can be tailored to reflect the 
relative importance of hypotheses
– I.e., can deal with complex trial objectives and multiple structured hypotheses

• Built on the principle of closed testing
– I.e., they can be thought of as a shortcut to specifying a closed testing 

procedure
– Ensures strong FWER control

• Very visual technique
– Easily and efficiently communicable

• Includes many common multiple testing procedures as special cases
– Fixed sequence, Bonferroni, Holm, …

Graphical testing procedures (GTPs)

19



1. Hypotheses 𝐻", … , 𝐻G represented as 
nodes

2. (Initial) split of significance level 
represented by weights 𝑤", … , 𝑤G

3. ‘𝛼-recycling’ through weighted 
directed edges

The graph
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Specification

𝐻) 𝐻*

𝐻) 𝐻*

𝐻) 𝐻*

𝑤" = 0.5

0.5 0.5

1

1

𝑤& = 0.5



• Fixed sequence: Maximizes power if 
previous hypotheses rejected as all 
tests performed at level 𝛼

• Bonferroni: No 𝛼-recycling

• Holm: Everything in Bonferroni + more 
→ more powerful

Examples
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• Suppose that 𝑝" = 0.02 and 𝑝( = 0.01 are 
the p-values for 𝐻" and 𝐻(

• As 𝑝( = 0.01 ≤ 0.0125 = 0.5 0.025 = 𝑤(𝛼, 
reject 𝐻( and update the graph

• As 𝑝" = 0.02 ≤ 0.025 = 1 0.025 = 𝑤"𝛼, we 
can now also reject 𝐻"

Example: Holm

22

𝐾 = 2 and 𝛼 = 0.025

𝐻) 𝐻*0.5 0.5

1
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• The graph defines a closed testing procedure with weighted tests 
(e.g., weighted Bonferroni) for each intersection hypothesis

• If a hypothesis 𝐻I can be rejected at level 𝑤I𝛼 (i.e., 𝑝I ≤ 𝑤I𝛼), recycle 
its level 𝑤I𝛼 to the remaining (not yet tested) hypotheses, according to 
a prefixed rule, and continue testing with the updated 𝛼 levels

• Can be shown that the order you test in does not matter
– I.e., would always end with the same hypotheses being rejected

Technical basis
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• Transition matrix 𝐺 = 𝑔!" , where 𝑔!" is the fraction of 𝑤! allocated to 𝐻" if 𝐻! is rejected

• Require 0 ≤ 𝑔!" ≤ 1, 𝑔!! = 0 and ∑#$%& 𝑔!# = 1 for 𝑖, 𝑗 = 1,… , 𝐾

0. Set 𝒦 = 1,… ,𝐾

1. Select a 𝑘 ∈ 𝒦 such that 𝑝# ≤ 𝑤#𝛼 and reject 𝐻#; otherwise stop

2. Update the graph:

   𝒦 → 𝒦\{𝑘}

𝑤' → ;𝑤' + 𝑤#𝑔#' ∶ 𝑙 ∈ 𝒦
0 ∶ otherwise

𝑔'( → G
)!"*)!#)#"
%+)!#)#!

∶ for 𝑙,𝑚 ∈ 𝒦, 𝑙 ≠ 𝑚, 𝑔'#𝑔#' < 1

0 ∶ otherwise

3. If 𝒦 ≥ 1, go to Step 1; otherwise stop

Technical basis
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Graph update algorithm



• Four hypotheses
– PFS and OS for Experimental 1 and Experimental 2

• PFS hypotheses have all 𝛼 initially as the primary endpoint

• Equal priority to both comparisons

• Recycle to corresponding OS and other PFS hypothesis 

Running Example 1:
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Running Example 1: 
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Running Example 1: 
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Running Example 1: 
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Sequential updating
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Running Example 1: 

29

Sequential updating
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graph would look like this 

regardless of which of the PFS 
hypotheses was rejected first



Running Example 1:
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Sequential updating
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• R:
– gMCP
– gsDesign
– gMCPLite

Software
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• GTPs are a flexible and powerful method of strongly controlling the 
FWER across multiple hypotheses

• Completely defined by the initial graph, which contains:
– Nodes defining hypotheses
– Weights defining initial 𝜶 split
– Edges defining how to recycle 𝜶

Summary
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Viral exacerbation at 40x magnification

Graphical testing 
procedures in group 
sequential designs



• Long history of methods / application of GSDs to clinical trials

• Similar is true of GTPs

• But development of methods for use of GTPs in GSDs has occurred 
mostly over last 10-15 years

• Much was motivated by…

History
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• Hung et al (2007) considered a two-stage GSD with a primary and one 
key secondary endpoint

• The primary endpoint tested according to some GSD with cumulative 
one-sided type I error of 𝛼 = 0.025

• Question: How should we test the secondary endpoint after the 
primary endpoint achieves significance (either at the IA or FA)?
– Assuming that Secondary EP data accumulates from Interim to Final

• Investigated naïve strategy for secondary endpoint:
– Since the secondary endpoint is tested at most once, when the primary endpoint is 

significant, it seems reasonable to use the whole 𝜶 (regardless of IA or FA)

Hierarchical testing of a primary and one 
secondary endpoint

35



• Demonstrated that this approach 
does not control the FWER

• Depending on the correlation between 
the endpoints, FWER could be as 
much as 4.1%

• So specialist methodology required 
for FWER control

Hierarchical testing of a primary and one 
secondary endpoint

36

Hung et al (2007)

Naïve strategy



• Maurer and Bretz (2013), amongst others, provide highly general 
methodology for testing primary and secondary endpoints in GSD 
setting with strong control of the FWER

• Take home message: Essentially all you have to do is specify 
your initial GTP and your GSD for each hypothesis
– I.e., think of it as the union of two more familiar steps: specifying a GTP and specifying 

GSDs
– There are some finer points, but this gets you the majority of the way there

GTPs for GSDs
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Running Example 1:
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Focus on PFS for E1 vs Cntrl

• Single IA at ~70% IF

• LDOF spending function

• Initially it has weight of 0.5

• Overall one-sided 𝛼 = 0.025
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Running Example 1:
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Focus on PFS for E1 vs Cntrl
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Running Example 1: 
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Focus on PFS for E1 vs Cntrl

PFS
E1

PFS
E2

0.75

OS
E2

OS
E2

0.25 0

0.67

1

0.33
0.5

0.5
0.000

0.005

0.010

0.015

0.020

0.025

0.00 0.25 0.50 0.75 1.00
Information fraction,  t jk

O
ne
−s

id
ed

 c
um

ul
at

ive
 α

 s
pe

nd
,  
f k

(w
kα

, t
jk

)

wk 0.5 0.75

As the graph updates the 
allowed total spend, the whole 

spending function updates



Running Example 1:
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Focus on PFS for Tec vs Len
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• The algorithm stated earlier allows for 
what has been termed ’look back’ analyses

• E.g., consider a simple case where there’s 
two possible spending function shapes, 
based on 𝑤 = 0.5 or 𝑤 = 1, and a single IA

• Suppose that at the IA we have to stay at 
𝑤 = 0.5 and so we aren’t able to reject the 
null based on the black dot in the plot

‘Look back’ analyses
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• If we reach 𝑤 = 1 at the FA, we are 
technically allowed to ‘look back’ and claim 
significance for this hypothesis based on 
the IA p-value

• In practice, this might be a hard sell to 
regulators as at the FA we have more data 
available and still have 𝛼 available for 
retesting this hypothesis

‘Look back’ analyses
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• Where this ‘look back’ is useful is if we have data that matures at 
different rates

• E.g., suppose there’s two hypotheses with expected IFs at three 
analyses of:
– H1: 50%, 100%, 100%
– H2: 33%, 67%, 100%

• Suppose we don’t manage to reject H1 at IA2, and eventually reject H2 
at the FA

• Then we are allowed to retest H1 using its IA2 p-value with the recycled 
𝛼

‘Look back’ analyses
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• Phase 3 study in subjects with relapsed/refractory multiple myeloma 
who have received at least 4 prior lines of therapy

Example: MonumenTAL-5
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Tal vs Belamaf
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• Dual primary endpoints of ORR and PFS are grouped into a primary 
family, which serves as a gatekeeper for the second family (CR+, MRD-, 
OS)

Example: MonumenTAL-5
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Tal vs Belamaf

Family 1 Family 2



• Single IA, 3 months after the 140th participant (n = 216) is randomized
– So ORR tested with ~140 subjects included
– PFS expected to be tested with ~114 events

• FA for PFS when 163 events have occurred
– At this point, ORR may be retested with ~216 subjects included

• PFS designed using KDM(2) spending function, but ORR uses a different 
approach to 𝛼-recycling

Example: MonumenTAL-5
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Tal vs Belamaf



• This means that the entire spending 
function trajectory updates when a 
larger weight becomes available to PFS

• Creates an ‘issue’ that some 𝛼 may be 
wasted if we only recycle at the FA

PFS uses immediate recycling
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ORR uses delayed recycling
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ORR :  Delayed α recycling

0.00 0.25 0.50 0.75 1.00

0.000

0.005

0.010

0.015

0.020

0.025

Information fraction,  t j ORR

O
ne
−s

id
ed

 c
um

ul
at

ive
 α

 s
pe

nd
,  
f O

R
R
(t j

 O
R

R
)

wORR 0.5 (Failure for PFS) 1 (Success for PFS)

• Alternative, can prospectively say that 
additional 𝛼 will only be used at the FA 
if more weight becomes available

• Can think of this a little bit like changing 
the spending function
– vs. immediate recycling which keeps the same 

spending function, but just updates how much 
can be spent



Immediate vs. delayed recycling
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Which is best?

• Depends on study specifics and objectives

• Usually, immediate recycling will be the preferred approach
– Corresponds to the usual reason for doing a GSD: trying to increase the chance of an earlier 

significant result

• In the given example, delayed recycling kind of maximize currently available alpha at
IA

• Also, delayed recycling may make more sense for outcomes around which there is 
more uncertainty about the effect or for which an early significant result is unlikely

• It’s also possible to defines recycling to begin at a certain analysis
– E.g., recycling from analysis 3 in a trial with up to 5 analyses
– But you cannot choose the time from which you recycle adaptively: it has to be prespecified



Protocol / SAP
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What to include?

• Important to make the problem clearly defined

• So definitely specify exactly what we’ve discussed:
– Initial graph
– Spending functions / expected IFs for each GSD

• Approach to 𝛼-recycling (immediate vs delayed)

• May also be helpful to list all associated nominal p-values based on the 
possible weights that the hypotheses could have
– Becomes totally transparent what the thresholds for significance should be at 

each analysis



• GTPs can easily be incorporated in a GSD framework

• Specify:
– Initial graph
– Spending function and IFs for each hypothesis

• Tip: decouple the graph and the spending in your mind
– The graph only tells you how much 𝛼, in total, you have to spend on a hypothesis. It tells 

you nothing about how it will be spent

• I.e., it involves specifying what you would for a GTP in a fixed-
sample trial and what you would for each hypothesis in a GSD

Summary
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Software



• For a simple graph, it is easy to determine all possible 𝛼 levels a given 
hypothesis can be tested

• Becomes labor intensive / more challenging as graph complexity 
increases

• Tools for automation become more helpful…

• gMCPLite includes some useful functions, but has a steep learning 
curve
– https://merck.github.io/gMCPLite/articles/GraphicalMultiplicity.html

• We will use some R Markdown

Derivation of testing boundaries
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• Created a template that shows how we 
can use gsDesign and gMCP to find all 
possible nominal p-values

• Can download the underlying .Rmd file 
and the .html output

• Link here

R Markdown
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• You can easily use standard software for computing the stopping rules 
under a simple graph

• For more complex graphs, if you need all the possible stopping rules 
then using available tools for automation can expedite things 
substantially

• For all graphs, certain ‘conditional powers’ are easy to get: if you need 
unconditional powers, you likely need simulation

Summary
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Discussion



• Approaches to testing multiple hypotheses in a GSD framework 
that may seem reasonable can inflate the FWER

• Specialist methodology is therefore required: GTPs are such an 
approach, that can be readily used in a GSD setting

• We must specify:
– The initial graph
– The GSD for each of the hypotheses in the graph
– (And the approach to using recycled 𝛼: immediate vs delayed)

Summary
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• GTPs (typically) do not make use of correlation between test 
statistics

• Generally speaking we can’t use estimates of unknown correlations / it 
often isn’t a great idea to pre-specify guesses for unknown correlations
– E.g., the correlation between endpoints like PFS and OS

• But using known correlations can make things more efficient
– E.g., the correlation induced by a shared control arm in a multi-arm trial

• There are extensions to what’s been discussed to use such correlations

• In fact, if we need a very general testing approach, any closed testing 
procedure can be incorporated into a GSD framework

Extensions
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