

### An introduction to the use of graphical testing procedures in group sequential designs NJ-ASA 2023 June 23<sup>th</sup> 2023

Yevgen Tymofyeyev (joined work with Michael Grayling)

Statistics in Decision Sciences Janssen RD of J&J



### Sebastian Ferreira, Untitled 1

Artwork from the National Art Exhibitions of the Mentally Ill, Inc (NAEMI).

pharmaceutical companies of

Jansser

### Agenda









- Three-arm design, comparing the Experimental Treatments 1 and 2 (E1) and E2) to against Control
- 500:500:500 patient design
- Primary endpoint is progression-free survival (PFS)  $- mPFS_{Ien} = 65 mo$ ,  $HR_{PFS Tec} = HR_{PFS TecLen} = 0.7$ – Single interim analysis
- Key secondary outcome of overall survival (OS)  $-mOS_{Ien} = 100 mo$ ,  $HR_{OS Tec} = HR_{OS TecLen} = 0.75$ 
  - Three interim analyses





Jans

# Group sequential design for a single endpoint







### **Group sequential design (GSD)** introduction

- Many clinical trials are designed considering an option of early termination
  - Overseen by Data and Safety Monitoring Board
- Reasons to conduct interim analyses as in Jennison & Turnbull (2000):
  - Ethical, administrative and economic
- Group sequential designs have been developed that avoid inflating the pre-specified type I error associated with the repeated testing of the treatment effect based on accumulating data (EMEA, 2007)
- There are also incentives to reach early decision if study is negative





# **Group Sequential Tests**

- Test  $H_0$ :  $\mu \le 0$  against  $H_1$ :  $\mu > 0$
- $Z_1, Z_2, \dots, Z_J$  are standardized test statistics obtained at analyses  $1, \dots, J$
- Crossing upper boundary (denoted by b<sub>j</sub> 's) results in early stopping for a positive outcome

• 
$$P_{\mu=0}\left(U_{j=1}^J Z_j > b_j\right) = \alpha$$

 Crossing lower boundary => stopping for futility





6

### Wang and Tsiatis Family with parameter $\Delta$





 $b_j = C_{WT} j^{\Delta - 0.5}$ 

### O'Brien-Fleming Pocock boundary



# **Functional form efficacy bounds**

*I.e., the original approach* 

- Can easily be generalised for arbitrary information levels fixed in advance
- Small deviation from the planned information levels will not lead to substantial impact on type I / II error rates
- But a better way of designing under unpredictable information levels is...



# **Error spending**

### *I.e., the approach usually used today*

- Handles unpredictable information levels with strict type I error control
- Doesn't require maximum number of analyses to be pre-specified
- Use non-decreasing function  $f : [0,1] \rightarrow [0,\alpha]$ , that gives **cumulative**  $\alpha$ **spend** at IF  $t_i$  as  $f(t_i)$ 
  - Information fractions (IFs)  $t_j = \frac{I_j}{I_J}$ 
    - Where I<sub>i</sub> amount of statistical information at the *j*-th analysis
- Does require information level  $I_i$  to not depend on  $\hat{\theta}_1, \dots, \hat{\theta}_{i-1}$





### **Error Spending Function Approach**

Given Function  $f: [0,1] \rightarrow [0, \alpha]$  non-decreasing Fix, maximum information (N or # events)  $I_{max}$ 

Analysis 1 get  $b_1$ :

$$P_{H_0}(Z_1 > b_1) = f(I_1/I_{max})$$

Analysis 2 get  $b_2$ :

 $P_{H_0}(Z_1 < b_1, Z_2 > b_2) = f(I_2/I_{max}) - f(I_1/I_{max})$ 

• • •

Continue solving for  $b_j$  until reaching  $I_{max}$ , and "spend all alpha"

Also, the method accommodates "under" and "overrunning" of information scenarios



INSSEN Johnson Johnson

10

# **Common spending functions**

Lan and DeMets O'Brien-Fleming approximation: •

 $f(t) = 2\{1 - \Phi[\Phi^{-1}(1 - \alpha/2)/\sqrt{t}]\}$ 

• Lan and DeMets Pocock approximation:

$$f(t) = \alpha \ln\{1 + (e-1)t\}$$

Hwang, Shi and DeCani ( $\gamma$ -family), with  $\gamma \in \mathbb{R}$ : •

$$f(t) = \begin{cases} \alpha(1 - e^{-\gamma t})/(1 - e^{-\gamma}) & \gamma \neq 0\\ \alpha t & \gamma = 0 \end{cases}$$

Similar to O'Brien-Fleming  $\gamma = -4$ 

- Similar to Pocock  $\gamma = 1$
- Kim and DeMets ( $\rho$ -family / power-family), with  $\rho > 0$ :

$$f(t) = \alpha t^{\rho}$$

- Similar to O'Brien-Fleming  $\rho = 3$
- Similar to Pocock  $\rho = 0.75$





### **Software**

- EAST mycytel.cytel.com
- ADDPLAN
- SAS SEQDESIGN
- R:
  - gsDesign
  - rpact (~ ADDPLAN)
  - Others too...

https://gsdesign.shinyapps.io/prod/ https://rpact.shinyapps.io/public/ https://cran.r-project.org/web/views/ClinicalTrials.html









- Just consider TecLen vs Len for PFS - mPFSLen = 65 mo, HR<sub>PFS TecLen</sub> = 0.7
- Usual total one-sided  $\alpha = 0.025$  and suppose we desire 90% power – More on this later though
- 5% drop-out rate for PFS
- 1000 patients with recruitment rate = 42 pts/mo
- GSD:
  - Single interim analysis at 70% IF (i.e.,  $t_1 = 0.7$ ,  $t_2 = 1$ )
  - Lan and DeMets O'Brien-Fleming (LDOF) spending function







### gsDesign

| > gsDesign::gsSurv  | (k          | =   | 2,                          |
|---------------------|-------------|-----|-----------------------------|
| +                   | test.type   | =   | 1,                          |
| +                   | alpha       | =   | 0.025,                      |
| +                   | beta        | =   | 0.1,                        |
| +                   | timing      | =   | c(0.7, 1),                  |
| +                   | sfu         | =   | gsDesign::sfLDOF,           |
| +                   | lambdaC     | =   | log(2)/65,                  |
| +                   | hr          | =   | 0.7,                        |
| +                   | eta         | =   | $-(1/12) * \log(1 - 0.05),$ |
| +                   | gamma       | =   | 42,                         |
| +                   | R           | =   | 1000/42)                    |
| Time to event group | o sequentia | al  | design with HR= 0.7         |
| Equal randomization | 1:          | נ   | ratio=1                     |
| One-sided group sec | quential de | esi | ign with                    |
| 90 % power and 2.5  | % Type I B  | Erı | for.                        |
|                     |             | _   |                             |
| Analysis N Z        | Nominal p   | 2   | Spend                       |
| 1 236 2.44          | l 0.0074    | 4 ( | 0.0074                      |
| 2 337 2.00          | 0.0228      | 3 ( | 0.0176                      |

assume any cross stops the trial Upper boundary (power or Type I Error) Analysis 2 Total E{N} Theta 1 0.0000 0.0074 0.0176 0.025 335.8 0.1779 0.6152 0.2848 0.900 274 4 Т Events HR efficacy n IA 1 44.28596 1000 235.5577 Final 63.88113 1000 336.5110 Accrual rates: Stratum 1 0-23.81 42 Control event rates (H1): Stratum 1 0-Inf 0.01 Censoring rates:

Janssen

Stratum 1 0-Tnf 0

++ alpha spending: Lan-DeMets O'Brien-Fleming approximation spending function with none = 1.

0.0250



Total

Boundary crossing probabilities and expected sample size

0.728 0.804



### rpact

| > | design <-                       |                 |      |                |
|---|---------------------------------|-----------------|------|----------------|
| + | rpact::getDesignGroupSequentia  |                 | = 2, |                |
| + |                                 | alpha           |      | = 0.025,       |
| + |                                 | beta            |      | = 0.1,         |
| + |                                 | sided           |      | = 1,           |
| + |                                 | informationRat  | tes  | s = c(0.7, 1), |
| + |                                 | typeOfDesign    |      | = "asOF")      |
| > | sampleSizeResult <-             |                 |      |                |
| + | rpact::getSampleSizeSurvival(de | esign           | =    | design,        |
| + | 1                               | ambda2          | =    | log(2)/65,     |
| + | h                               | azardRatio      | =    | 0.7,           |
| + | d.                              | ropoutRate1     | =    | 0.05,          |
| + | d                               | ropoutRate2     | =    | 0.05,          |
| + | d.                              | ropoutTime      | =    | 12,            |
| + | a                               | ccrualTime      | =    | c(0, 1000/42), |
| + | a                               | ccrualIntensity | =    | 42)            |
| > | summary(sampleSizeResult)       |                 |      |                |

Sample size calculation for a survival endpoint

Sequential analysis with a maximum of 2 looks (group sequential design), overall significance level 2.5% (one-sided). The sample size was calculated for a two-sample logrank test,

H0: hazard ratio = 1, H1: hazard ratio = 0.7, control lambda(2) = 0.011, accrual time = 23.81, accrual intensity = 42, dropout rate(1) = 0.05, dropout rate(2) = 0.05, dropout time = 12, power 90%.

| Stage<br>Information rate                                                            |   |
|--------------------------------------------------------------------------------------|---|
| Efficacy boundary (z-value scale)                                                    |   |
| Expected number of subjects                                                          | 1 |
| Cumulative number of events                                                          |   |
| Expected study duration                                                              | ( |
| One-sided local significance level                                                   | ( |
| Exit probability for efficacy (under HO)<br>Exit probability for efficacy (under H1) | ( |

Legend:

(t): treatment effect scale





PHARMACEUTICAL COMPANIES OF Johnson & Johnson



### Summary

- GSDs seek to reduce the expected time to a significant result
- Easy to control type I error rate using error spending approach
- On top of usual requirements for sample size calculation, specify:
   IFs at the interim analyses
  - Spending function





## sult proach specify:



16

# **Graphical testing** procedures in fixedsample trials

Viral exacerbation at 40x magnification



### Multiple testing procedures

- Most clinical trials evaluate significance for multiple important outcomes
- Some evaluate significance for multiple treatment arms
- In either case, we then typically need to control the probability of committing one or more type I errors across the analyses - Family-wise error rate (FWER) control
- **Multiple testing procedures** are methods for achieving such FWER control







## **Graphical testing procedures (GTPs)**

- Flexible multiple testing framework that can be tailored to reflect the relative importance of hypotheses
  - I.e., can deal with complex trial objectives and multiple structured hypotheses
- Built on the principle of closed testing
  - I.e., they can be thought of as a shortcut to specifying a closed testing procedure
  - Ensures strong FWER control
- Very visual technique - Easily and efficiently communicable
- Includes many common multiple testing procedures as special cases - Fixed sequence, Bonferroni, Holm, ...



Jans

Johnson & Johnson

Statistics and Decision Sciences

# The graph

Specification

1. Hypotheses  $H_1, \ldots, H_K$  represented as **nodes** 

2. (Initial) split of significance level represented by **weights**  $w_1, \ldots, w_K$ 

# 3. 'α-recycling' through **weighted** directed edges



 $w_1 = 0.5 (H_1)$ 

 $H_1$ 









20

### **Examples**

K = 2

• Fixed sequence: Maximizes power if previous hypotheses rejected as all tests performed at level  $\alpha$ 

**Bonferroni:** No  $\alpha$ -recycling 

**Holm:** Everything in Bonferroni + more ullet $\rightarrow$  more powerful









### **Example: Holm**

 $K = 2 \text{ and } \alpha = 0.025$ 

Statistics and Decision Sciences

Industry-leading Statistical Expertise

• Suppose that  $p_1 = 0.02$  and  $p_2 = 0.01$  are the p-values for  $H_1$  and  $H_2$ 

• As  $p_2 = 0.01 \le 0.0125 = 0.5(0.025) = w_2 \alpha$ , reject  $H_2$  and update the graph

• As  $p_1 = 0.02 \le 0.025 = 1(0.025) = w_1 \alpha$ , we can now also reject  $H_1$ 



H1

 $H_1$ 

0.5







 $H_2$ 







### **Technical basis**

- The graph defines a closed testing procedure with weighted tests (e.g., weighted Bonferroni) for each intersection hypothesis
- If a hypothesis  $H_k$  can be rejected at level  $w_k \alpha$  (i.e.,  $p_k \leq w_k \alpha$ ), recycle its level  $w_k \alpha$  to the remaining (not yet tested) hypotheses, according to a prefixed rule, and continue testing with the updated  $\alpha$  levels
- Can be shown that the order you test in does not matter – I.e., would always end with the same hypotheses being rejected





Janss



### **Technical basis**

### Graph update algorithm

- Transition matrix  $G = \{g_{ij}\}$ , where  $g_{ij}$  is the fraction of  $w_i$  allocated to  $H_j$  if  $H_i$  is rejected
- Require  $0 \le g_{ij} \le 1$ ,  $g_{ii} = 0$  and  $\sum_{k=1}^{K} g_{ik} = 1$  for  $i, j = 1, \dots, K$

**0.** Set  $\mathcal{K} = \{1, ..., K\}$ 

- 1. Select a  $k \in \mathcal{K}$  such that  $p_k \leq w_k \alpha$  and reject  $H_k$ ; otherwise stop
- 2. Update the graph:

$$\begin{split} \mathcal{K} &\to \mathcal{K} \setminus \{k\} \\ w_l &\to \begin{cases} w_l + w_k g_{kl} : l \in \mathcal{K} \\ 0 &: \text{otherwise} \end{cases} \\ g_{lm} &\to \begin{cases} \frac{g_{lm} + g_{lk} g_{km}}{1 - g_{lk} g_{kl}} &: \text{for } l, m \in \mathcal{K}, l \neq m, g_{lk} g_{kl} < 1 \\ 0 &: \text{otherwise} \end{cases} \end{split}$$

3. If  $|\mathcal{K}| \ge 1$ , go to Step 1; otherwise stop





Jansse

24

- Four hypotheses

   PFS and OS for Experimental 1 and Experimental 2
- PFS hypotheses have all  $\alpha$  initially as the primary endpoint
- Equal priority to both comparisons
- Recycle to corresponding OS and other PFS hypothesis





Johnson & Johnson











26

### Sequential updating











Sequential updating



Note: There are now edges that weren't previously in the graph



Statistics and Decision Sciences Industry-leading Statistical Expertise



Sequential updating



It's now symmetric again: the graph would look like this regardless of which of the PFS hypotheses was rejected first



Statistics and Decision Sciences

pharmaceutical companies of Johnson Johnson

29

Sequential updating









30

### Software

- R:
  - gMCP
  - gsDesign
  - gMCPLite

| -                                                       |                                   |                         |                                 |                          |
|---------------------------------------------------------|-----------------------------------|-------------------------|---------------------------------|--------------------------|
| gMCP GUI0.8.10                                          |                                   |                         |                                 |                          |
| Eile Example graphs Analysis Extras Help                |                                   |                         |                                 |                          |
|                                                         | Transition Matrix                 |                         |                                 |                          |
|                                                         |                                   | H1                      |                                 | H2                       |
| Place new nodes and edges or start the test procedure   | H1 0                              |                         | 1                               |                          |
|                                                         | 1                                 |                         | V                               |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         |                                   |                         |                                 |                          |
|                                                         | Hypothesis                        | Weights                 | P-Value                         |                          |
|                                                         | H1                                | 0.5                     | 0.015                           | Reject and pass $\alpha$ |
|                                                         |                                   |                         |                                 |                          |
|                                                         | H2                                | 0.5                     | 0.097                           | Reject and pass α        |
|                                                         | Sum of weights: 1                 | I                       | Load p-values from R            |                          |
|                                                         | T-1-1-                            | 0.005                   | 1                               |                          |
| Description Analysis                                    | Total d:                          | 0.025                   | J                               |                          |
|                                                         |                                   |                         |                                 |                          |
| Graph representing the (unweighted)                     | No information                    | n about correlations (B | onterroni based weighted tests) |                          |
| -                                                       | O Select an R co                  | orrelation matrix       | 2x2-matrices found. 👻           | Create Matrix            |
| The graph is a complete graph, where all nodes have the |                                   |                         |                                 |                          |
| same weights and each edge weight is 1/(n-1).           | <ul> <li>Use Simes tes</li> </ul> | st                      |                                 |                          |
| Literature: Holm, 5. (1979). A simple sequentally       |                                   |                         |                                 |                          |





pharmaceutical companies of Johnson Johnson

### Summary

- GTPs are a **flexible and powerful** method of strongly controlling the FWER across multiple hypotheses
- Completely defined by the initial graph, which contains:
  - Nodes defining hypotheses
  - Weights defining initial  $\alpha$  split
  - Edges defining how to recycle  $\alpha$







# Graphical testing procedures in group sequential designs

Viral exacerbation at 40x magnification



### History

- Long history of methods / application of GSDs to clinical trials
- Similar is true of GTPs
- But development of methods for use of GTPs in GSDs has occurred mostly over last 10-15 years
- Much was motivated by...







### Hierarchical testing of a primary and one secondary endpoint

- Hung et al (2007) considered a two-stage GSD with a primary and one key secondary endpoint
- The primary endpoint tested according to some GSD with cumulative one-sided type I error of  $\alpha = 0.025$
- **Question:** How should we test the secondary endpoint after the primary endpoint achieves significance (either at the IA or FA)? - Assuming that Secondary EP data accumulates from Interim to Final
- Investigated **naïve strategy** for secondary endpoint:
  - Since the secondary endpoint is tested at most once, when the primary endpoint is significant, it seems reasonable to use the **whole**  $\alpha$  (regardless of IA or FA)



Jans

Johnson allo

### Hierarchical testing of a primary and one secondary endpoint

- Demonstrated that this approach does not control the FWER
- Depending on the correlation between the endpoints, FWER could be as much as 4.1%
- So specialist methodology required for FWER control









### **GTPs for GSDs**

- Maurer and Bretz (2013), amongst others, provide highly general methodology for testing primary and secondary endpoints in GSD setting with strong control of the FWER
- Take home message: Essentially all you have to do is specify your initial GTP and your GSD for each hypothesis
  - I.e., think of it as the union of two more familiar steps: specifying a GTP and specifying GSDs
  - There are some finer points, but this gets you the majority of the way there







### Focus on PFS for E1 vs Cntrl



- Single IA at ~70% IF
- LDOF spending function
- Initially it has weight of 0.5
- Overall one-sided  $\alpha = 0.025$





# IF nction wht of 0.5 $\alpha = 0.025$



39

### Focus on PFS for E1 vs Cntrl





 $W_k \rightarrow 0.5$ 



Statistics and Decision Sciences Industry-leading Statistical Expertise





 $W_k - 0.5 - 0.75$ 



Statistics and Decision Sciences Industry-leading Statistical Expertise

PHARMACEUTICAL COMPANIES OF Johnson & Johnson



Focus on PFS for Tec vs Len

 $W_k - 0.5 - 0.75 - 1$ 



Statistics and Decision Sciences Industry-leading Statistical Expertise



### **`Look back' analyses**

- The algorithm stated earlier allows for what has been termed 'look back' analyses
- E.g., consider a simple case where there's two possible spending function shapes, based on w = 0.5 or w = 1, and a single IA
- Suppose that at the IA we have to stay at w = 0.5 and so we aren't able to reject the null based on the black dot in the plot





W - 0.5 - 1



### **`Look back' analyses**

- If we reach w = 1 at the FA, we are technically allowed to 'look back' and claim significance for this hypothesis based on the IA p-value
- In practice, this might be a hard sell to regulators as at the FA we have more data available and still have  $\alpha$  available for retesting this hypothesis







W - 0.5 - 1



### **`Look back' analyses**

- Where this 'look back' is useful is if we have data that matures at different rates
- E.g., suppose there's two hypotheses with expected IFs at three analyses of:  $-H_1$ : 50%, 100%, 100%  $-H_2$ : 33%, 67%, 100%
- Suppose we don't manage to reject  $H_1$  at IA2, and eventually reject  $H_2$ at the FA
- Then we are allowed to retest  $H_1$  using its IA2 p-value with the recycled α





Jansser



### **Example: MonumenTAL-5**

Tal vs Belamaf

• Phase 3 study in subjects with relapsed/refractory multiple myeloma who have received at least 4 prior lines of therapy









### **Example: MonumenTAL-5**

Tal vs Belamaf

 Dual primary endpoints of ORR and PFS are grouped into a primary family, which serves as a gatekeeper for the second family (CR+, MRD-, OS)











### **Example: MonumenTAL-5**

### Tal vs Belamaf

- Single IA, 3 months after the 140<sup>th</sup> participant (n = 216) is randomized
  - So ORR tested with ~140 subjects included
  - PFS expected to be tested with ~114 events
- FA for PFS when 163 events have occurred - At this point, ORR may be retested with  $\sim$ 216 subjects included
- PFS designed using KDM(2) spending function, but ORR uses a different approach to  $\alpha$ -recycling







### **PFS uses immediate recycling**

- This means that the entire spending function trajectory updates when a larger weight becomes available to PFS
- Creates an 'issue' that some  $\alpha$  may be wasted if we only recycle at the FA







### $W_{\text{PFS}} \rightarrow 0.5$ (Failure for ORR) $\rightarrow 1$ (Success for ORR)

PHARMACEUTICAL COMPANIES OF Johnson Johnson

### **ORR** uses delayed recycling

- Alternative, can prospectively say that additional  $\alpha$  will only be used at the FA if more weight becomes available
- Can think of this a little bit like changing the spending function
  - vs. immediate recycling which keeps the same spending function, but just updates how much can be spent





Statistics and Decision Sciences Industry-leading Statistical Expertise

 $W_{OBB} \rightarrow 0.5$  (Failure for PFS)  $\rightarrow 1$  (Success for PFS)

PHARMACEUTICAL COMPANIES OF (fohnson₄(fohnson

## Immediate vs. delayed recycling

### Which is best?

- Depends on study specifics and objectives
- Usually, immediate recycling will be the preferred approach
  - Corresponds to the usual reason for doing a GSD: trying to increase the chance of an earlier significant result
- In the given example, delayed recycling kind of maximize currently available alpha at IA
- Also, delayed recycling may make more sense for outcomes around which there is more uncertainty about the effect or for which an early significant result is unlikely
- It's also possible to defines recycling to begin at a certain analysis
  - E.g., recycling from analysis 3 in a trial with up to 5 analyses
  - But you cannot choose the time from which you recycle adaptively: it has to be prespecified





Jar

## **Protocol / SAP**

What to include?

- Important to make the problem clearly defined
- So definitely specify exactly what we've discussed:
  - Initial graph
  - Spending functions / expected IFs for each GSD
    - Approach to  $\alpha$ -recycling (immediate vs delayed)
- May also be helpful to list all associated nominal p-values based on the possible weights that the hypotheses could have
  - Becomes totally transparent what the thresholds for significance should be at each analysis





Jans



### Summary

- GTPs can easily be incorporated in a GSD framework
- Specify:
  - Initial graph

Statistics and Decision Sciences

Industry-leading Statistical Expertise

- Spending function and IFs for each hypothesis
- Tip: decouple the graph and the spending in your mind – The graph only tells you how much  $\alpha$ , in total, you have to spend on a hypothesis. It tells you nothing about how it will be spent
- I.e., it involves specifying what you would for a GTP in a fixedsample trial and what you would for each hypothesis in a GSD





# Software

Viral exacerbation at 40x magnification



### **Derivation of testing boundaries**

- For a simple graph, it is easy to determine all possible  $\alpha$  levels a given hypothesis can be tested
- Becomes labor intensive / more challenging as graph complexity increases
- Tools for automation become more helpful...
- gMCPLite includes some useful functions, but has a steep learning curve
  - <u>https://merck.github.io/gMCPLite/articles/GraphicalMultiplicity.html</u>
- We will use some R Markdown



Jansse

(Johnson 4 Joh



### **R** Markdown

- Created a template that shows how we can use gsDesign and gMCP to find all possible nominal p-values
- Can download the underlying .Rmd file and the .html output









56

### Summary

- You can easily use standard software for computing the stopping rules under a simple graph
- For more complex graphs, if you need all the possible stopping rules then using available tools for automation can expedite things substantially
- For all graphs, certain 'conditional powers' are easy to get: if you need unconditional powers, you likely need simulation







# Discussion

Viral exacerbation at 40x magnification



### Summary

- Approaches to testing multiple hypotheses in a GSD framework that may seem reasonable can inflate the FWER
- Specialist methodology is therefore required: GTPs are such an approach, that can be readily used in a GSD setting
- We must specify:
  - The initial graph
  - The GSD for each of the hypotheses in the graph
  - (And the approach to using recycled  $\alpha$ : immediate vs delayed)





Jans

# References

Viral exacerbation at 40x magnification



### References

### Multiple testing procedures for GSDs

De S, Baron M (2012) Step-up and step-down methods for testing multiple hypotheses in sequential experiments. J Stat Plan Infer 142:2059-70

Fu Y (2018) Step-down parametric procedures for testing correlated endpoints in a groupsequential trial. Stat Biopharm Res 10:18-25

Glimm E, Maurer W, Bretz F (2010) Hierarchical testing of multiple endpoints in group-sequential trials. Stat Med 29:219-28

Gou J (2020) Sample size optimization and initial allocation of the significance levels in group sequential trials with multiple endpoints. Biom J 64:301-11

Hung H, Wang S, O'Neill R (2007) Statistical considerations for testing multiple endpoints in group sequential or adaptive clinical trials. J Biopharm Stat 17:1201-10

Kosorok M, Yuanjun S, DeMets D (2004) Design and analysis of group sequential clinical trials with multiple primary endpoints. *Biometrics* **60:**134-45

Li H, Wang J, Luo X, Grechko J, Jennison C (2018) Improved two-stage group seguential procedures for testing a secondary endpoint after the primary endpoint achieves significance. *Biom* J 60:893-902

Li X, Wulfsohn M, Koch G (2017) Considerations on testing secondary endpoints in group sequential design. Stat Biopharm Res 9:333-7

Maurer W, Bretz F (2013) Multiple testing in group sequential trials using graphical approaches. Stat Biopharm Res 5:311-20

Maurer W, Glimm E, Bretz F (2011) Multiple and repeated testing of primary, coprimary, and secondary hypotheses. Stat Biopharm Res 3:336-52

Ohrn F, Niewczas J, Burman CF (2021) Improved group sequential Holm procedures for testing multiple correlated hypotheses over time. J Biopharm Stat 32:230-46

Proschan M, Follmann D (2022) A note on familywise error rate for a primary and secondary endpoint. *Biometrics* 

Tamhane A, Gou J, Jennison C, Mehta C, Curto T (2018) A gatekeeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks. *Biometrics* 74:40-8

Tamhane A, Mehta C, Liu L (2010) Testing a primary and a secondary endpoint in a group sequential design. Biometrics 66:1174-84 Tamhane A, Xi D, Gou J (2021) Group sequential Holm and Hochberg procedures. Stat Med **40:**5333-50 Tang D, Gnecco C, Geller N (1989) Design of group sequential clinical trials with multiple endpoints. J Am Stat Assoc 84:775-9 Xi D, Tamhane A (2015) Allocating recycled significance levels in group sequential procedures for multiple endpoints. *Biom J* 57:90-107 Ye Y, Li A, Liu L, Yao B (2013) A group sequential Holm procedure with multiple primary endpoints. Stat Med 32:1112-24

### Other

Bretz F, Maurer W, Brannath W, Posch M (2009) A graphical approach to sequentially rejective multiple test procedures. Stat Med 28:586-604

Hwang IK, Shih WJ, DeCani JS (1990) Group sequential designs using a family of type I error proability spending functions. Stat Med 9:1439-45

Jennison C, Turnbull BW (2000) Group sequential methods with applications to clinical trials. Chapman & Hall: Boca Raton, FL

Kim K, DeMets DL (1987) Design and analysis of group sequential tests based on the type I error spending rate function. *Biometrika* **74:**149-54

Lan KKG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70:659-63 Marcus R, Peritz E, Gabriel KR (1976) On closed testing procedures with special reference to

ordered analysis of variance. *Biometrika* 63:655-60

O'Brien PC, Fleming TR (1979) A multiple testing procedure for clinical trials. *Biometrics* **35**:549-56 Pocock SJ (1977) Group sequential methods in the design and analysis of clinical trials. *Biometrika* 

**64:**191-99

Wang SK, Tsiatis AA (1987) Approximately optimal one-parameter boundaries for group sequential trials. Biometrics 43:193-200



Statistics and Decision Sciences Industry-leading Statistical Expertise

PHARMACEUTICAL COMPANIES OF Johnson Johnson

### **Extensions**

- GTPs (typically) do not make use of correlation between test statistics
- Generally speaking we can't use estimates of unknown correlations / it often isn't a great idea to pre-specify guesses for unknown correlations – E.g., the correlation between endpoints like PFS and OS
- But using known correlations can make things more efficient – E.g., the correlation induced by a shared control arm in a multi-arm trial
- There are extensions to what's been discussed to use such correlations
- In fact, if we need a very general testing approach, any closed testing procedure can be incorporated into a GSD framework





folmson affol

